ZWR - Das Deutsche Zahnärzteblatt, Table of Contents ZWR - Das Deutsche Zahnärzteblatt 2017; 126(12): 616-621DOI: 10.1055/s-0043-121054 Fortbildung | Umweltzahnmedizin Georg Thieme Verlag KG Stuttgart · New YorkTitankorrosion und die Folgen: Argumente für Zirkon Elisabeth Jacobi-Gresser Recommend Article Abstract Buy Article Titanimplantate unterliegen einer mehr oder weniger ausgeprägten Tribokorrosion in Abhängigkeit von ihrer Oberflächenmodifikation und entlassen Metallpartikel in umgebende Gewebe. Die Partikeldissemination kann einerseits immunogene und andererseits toxische Reaktionen auslösen. Infolge von Makrophagenaktivierung kommt es zur Ausschüttung von proentzündlichen Zytokinen wie TNF-α und IL-1β. Biofilmadhäsion an der Implantatoberfläche verstärkt zudem die Korrosionsprozesse. Full Text References Literatur 1 Trindade R, Albrektsson T, Tengvall P. et al. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res 2014; 18: 192-203 2 Schliephake H, Neukam FW, Urban R. Titanbelastung parenchymatöser Organe nach Insertion von Titanschraubenimplantaten. Z Zahnärzt Implantol 1989; 5: 180-184 3 Weingart D, Steinemann S, Schilli W. et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants. Int J Oral Maxillofac Surg 1994; 23: 450-452 4 Urban RM, Jacobs JJ, Tomlinson MJ. et al. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000; 82: 457-476 5 Landolt D. Electrochemical and materials aspects of tribocorrosion systems. J Phys D: Appl Phys 2006; 39: 3121 6 Meyer U, Buhner M, Buchter A. et al. Fast element mapping of titanium wear around implants of different surface structures. Clin Oral Implant Res 2006; 17: 206-211 7 Nakashima Y, Sun DH, Trindade M. et al. Signaling pathway for tumor necrosis factor-a and interleukon-6 expression in human macrophagees exposed to titanium-alloy particulate debris in vitro. J Bone Joint Surg 1999; 81: 603-613 8 Olmedo DG, Paparella ML, Spielberg M. et al. Oral mucosa tissue response to titanium cover screws. J Periodontol 2012; 83: 973-980 9 Olmedo D, Fernández MM, Guglielmotti MB. et al. Macrophages related to dental implant failure. Implant Dent 2003; 12: 75-80 10 Jacobi-Gresser E, Huesker K, Schutt S. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg 2013; 42: 537-543 11 Liao J, Li C, Wang Y. et al. Meta-analysis of the association between common interleukin-1 polymorphisms and dental implant failure. Mol Biol Rep 2014; 41: 2789-2798 12 Degidi M, Artese L, Scarano A. et al. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J Periodontol 2006; 77: 73-80 13 Albrektsson T, Dahlin C, Jemt T. et al. Is marginal bone loss around oral implants the result of a provoked foreign body reaction?. Clin Implant Dent Relat Res 2014; 16: 155-165 14 Sterner T, Schütze N, Saxler G. et al. [Effects of clinically relevant alumina ceramic, zirconia ceramic and titanium particles of different sizes and concentrations on TNF-alpha release in a human macrophage cell line]. Biomed Tech (Berl) 2004; 49: 340-344 15 Bruno ME, Tasat DR, Ramos E. et al. Impact through time of different sized titanium dioxide particles on biochemical and histopathological parameters. J Biomed Mater Res A 2014; 102: 1439-1448 16 Jeon YM, Kim WJ, Lee MY. Studies on liver damage induced by nanosized-titanium dioxide in mouse. J Environ Biol 2013; 34: 283-287 17 Feng X, Chen A, Zhang Y. et al. Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine 2015; 10: 3547-3565 18 Chappuis V, Cavusoglu Y, Gruber R. et al. Osseointegration of zirconia in the presence of multinucleated giant cells. Clin Implant Dent Relat Res 2016; 18: 686-698 doi:10.1111/cid.12375 19 Kohal RJ, Weng D, Bächle M. et al. Loadet custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol 2004; 75: 1262-1268 20 Gahlert M, Roehling S, Sprecher CM. et al. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res 2012; 23: 281-286 21 Pettersson M, Kelk P, Belibasakis GN. et al. Titanium ions form particles that activate and execute interleukin-1beta release from lipopolysaccharide-primed macrophages. J Periodontal Res 2017; 52: 21-32 doi:10.1111/jre.12364 22 Scridhar S, Wilson jr. TG, Palmer KL. et al. In vitro investigation of the effect of oral bacteria in the surface oxidation of dental implants. Clin Implant Dent Relat Res 2015; 17: e562-e575 23 Rimondini L, Cerroni L, Carrassi A. et al. Bacterial colonization of zirconia ceramic sufaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants 2002; 17: 793-798 24 Scarano A, Piattelli M, Caputi S. et al. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 2004; 75: 292-296 25 Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A. et al. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol 2013; 58: 1139-1147 26 Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I. et al. In vitro biofilm formation on titanium and zirconia implant surfaces. J Periodontol 2017; 88: 298-307 27 Teughels W, Van Assche N, Sliepen I. et al. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006; 17: 68-81 28 Meissen R, Mintcheva M, Netuschil L. Matrix-Metalloproteinase-8-Spiegel in der periimplantären Sulkusflüssigkeit an Titan- und Zirkonnitridoberflächen. Int Par Rest Zahnheilk 2014; 34: 91-95